Register Now

Login

Lost Password

Lost your password? Please enter your email address. You will receive a link and will create a new password via email.

222-9+11+12:2*14+14 = ? ( )

Toán Lớp 11: Cho tập B = {0;3;4;5;7;8}. Lập được bao nhiêu số tự nhiên gồm 5 chữ số khác nhau, chia hết cho 2 và nhỏ hơn 50.000

Toán Lớp 11: Cho tập B = {0;3;4;5;7;8}. Lập được bao nhiêu số tự nhiên gồm 5 chữ số khác nhau, chia hết cho 2 và nhỏ hơn 50.000

Comments ( 1 )

  1. Giải đáp: Có thể lập 120 số tự nhiên gồm 5 chữ số khác nhau, chia hết cho 2 và nhỏ hơn 50.000
     
    Lời giải và giải thích chi tiết:
       Gọi số tự nhiên đó là: $\overline{abcde}$ $\begin{cases} a\neq0\\a<5\\a\neq b\neq c\neq d\neq e \end{cases}$
    Số đó phải chia hết cho 2: $e=\{0;4;8\}$
    +) TH1: $\begin{cases} a=3\\e=0\\b:\text{4 cách chọn}\\c: \text{3 cách chọn}\\d: \text{2 cách chọn} \end{cases}$
    Theo quy tắc nhân:
    → $4×3×2=24$ $(cách)$
    +) TH2: $\begin{cases} a=3\\e=4\\b:\text{4 cách chọn}\\c: \text{3 cách chọn}\\d: \text{2 cách chọn} \end{cases}$
    Theo quy tắc nhân:
    → $4×3×2=24$ $(cách)$
    +) TH3: $\begin{cases} a=3\\e=8\\b:\text{4 cách chọn}\\c: \text{3 cách chọn}\\d: \text{2 cách chọn} \end{cases}$
    Theo quy tắc nhân:
    → $4×3×2=24$ $(cách)$
    +) TH4: $\begin{cases} a=4\\e=0\\b:\text{4 cách chọn}\\c: \text{3 cách chọn}\\d: \text{2 cách chọn} \end{cases}$
    Theo quy tắc nhân:
    → $4×3×2=24$ $(cách)$
    +) TH5: $\begin{cases} a=4\\e=8\\b:\text{4 cách chọn}\\c: \text{3 cách chọn}\\d: \text{2 cách chọn} \end{cases}$
    Theo quy tắc nhân:
    → $4×3×2=24$ $(cách)$
    Theo quy tắc cộng ta có: $24+24+24+24+24=120$ $(số)$
    Vậy có thể lập 120 số tự nhiên gồm 5 chữ số khác nhau, chia hết cho 2 và nhỏ hơn 50.000

Leave a reply

222-9+11+12:2*14+14 = ? ( )

About Nhiên