Register Now

Login

Lost Password

Lost your password? Please enter your email address. You will receive a link and will create a new password via email.

222-9+11+12:2*14+14 = ? ( )

Toán Lớp 11: Câu 1:cos(3x-60°)= √3/2 Câu2:giải pt √ 3sinx -cosx = 1 Giúp mình mới ạ

Toán Lớp 11: Câu 1:cos(3x-60°)= √3/2
Câu2:giải pt √ 3sinx -cosx = 1
Giúp mình mới ạ

Comments ( 1 )

  1. Giải đáp:
    \(\begin{array}{l}
    1,\\
    \left[ \begin{array}{l}
    x = 30^\circ  + k.120^\circ \\
    x = 10^\circ  + k.120^\circ 
    \end{array} \right.\,\,\,\,\left( {k \in Z} \right)\\
    2,\\
    \left[ \begin{array}{l}
    x = \dfrac{\pi }{3} + k2\pi \\
    x = \pi  + k2\pi 
    \end{array} \right.\,\,\,\,\left( {k \in Z} \right)
    \end{array}\)
    Lời giải và giải thích chi tiết:
     Ta có:
    \(\begin{array}{l}
    1,\\
    \cos \left( {3x – 60^\circ } \right) = \dfrac{{\sqrt 3 }}{2}\\
     \Leftrightarrow \cos \left( {3x – 60^\circ } \right) = \cos 30^\circ \\
     \Leftrightarrow \left[ \begin{array}{l}
    3x – 60^\circ  = 30^\circ  + k.360^\circ \\
    3x – 60^\circ  =  – 30^\circ  + k.360^\circ 
    \end{array} \right.\\
     \Leftrightarrow \left[ \begin{array}{l}
    3x = 90^\circ  + k.360^\circ \\
    3x = 30^\circ  + k.360^\circ 
    \end{array} \right.\\
     \Leftrightarrow \left[ \begin{array}{l}
    x = 30^\circ  + k.120^\circ \\
    x = 10^\circ  + k.120^\circ 
    \end{array} \right.\,\,\,\,\left( {k \in Z} \right)\\
    2,\\
    \sqrt 3 \sin x – \cos x = 1\\
     \Leftrightarrow \dfrac{{\sqrt 3 }}{2}\sin x – \dfrac{1}{2}\cos x = \dfrac{1}{2}\\
     \Leftrightarrow \sin x.\cos \dfrac{\pi }{6} – \cos x.\sin \dfrac{\pi }{6} = \dfrac{1}{2}\\
     \Leftrightarrow \sin \left( {x – \dfrac{\pi }{6}} \right) = \dfrac{1}{2}\\
     \Leftrightarrow \sin \left( {x – \dfrac{\pi }{6}} \right) = \sin \dfrac{\pi }{6}\\
     \Leftrightarrow \left[ \begin{array}{l}
    x – \dfrac{\pi }{6} = \dfrac{\pi }{6} + k2\pi \\
    x – \dfrac{\pi }{6} = \dfrac{{5\pi }}{6} + k2\pi 
    \end{array} \right.\\
     \Leftrightarrow \left[ \begin{array}{l}
    x = \dfrac{\pi }{3} + k2\pi \\
    x = \pi  + k2\pi 
    \end{array} \right.\,\,\,\,\left( {k \in Z} \right)
    \end{array}\)

Leave a reply

222-9+11+12:2*14+14 = ? ( )