Register Now

Login

Lost Password

Lost your password? Please enter your email address. You will receive a link and will create a new password via email.

222-9+11+12:2*14+14 = ? ( )

Toán Lớp 11: ( √3-1)sinx – ( √3+1)cosx + √3 – 1 = 0 giúp e vs ạ gấp

Toán Lớp 11: ( √3-1)sinx – ( √3+1)cosx + √3 – 1 = 0
giúp e vs ạ gấp

Comments ( 2 )

  1. $\begin{array}{l}
    \tan \dfrac{{5\pi }}{{12}} = \tan \left( {\dfrac{{2\pi }}{3} – \dfrac{\pi }{4}} \right)\\
     = \dfrac{{\tan \dfrac{{2\pi }}{3} – \tan \dfrac{\pi }{4}}}{{1 + \tan \dfrac{{2\pi }}{3}\tan \dfrac{\pi }{4}}} = \dfrac{{ – \sqrt 3  – 1}}{{1 – \sqrt 3 }} = \dfrac{{\sqrt 3  + 1}}{{\sqrt 3  – 1}}\\
    \left( {\sqrt 3  – 1} \right)\sin x – \left( {\sqrt 3  + 1} \right)\cos x + \sqrt 3  – 1 = 0\\
     \Leftrightarrow \sin x – \dfrac{{\sqrt 3  + 1}}{{\sqrt 3  – 1}}\cos x + 1 = 0\\
     \Leftrightarrow \sin x – \tan \dfrac{{5\pi }}{{12}}\cos x + 1 = 0\\
     \Leftrightarrow \cos \dfrac{{5\pi }}{{12}}\sin x – \sin \dfrac{{5\pi }}{{12}}\cos x + \cos \dfrac{{5\pi }}{{12}} = 0\\
     \Leftrightarrow \sin \left( {x – \dfrac{{5\pi }}{{12}}} \right) =  – \cos \dfrac{{5\pi }}{{12}}\\
     \Leftrightarrow \sin \left( {x – \dfrac{{5\pi }}{{12}}} \right) =  – \sin \left( {\dfrac{\pi }{{12}}} \right)\\
     \Leftrightarrow \sin \left( {x – \dfrac{{5\pi }}{{12}}} \right) = \sin \left( { – \dfrac{\pi }{{12}}} \right)\\
     \Leftrightarrow \left[ \begin{array}{l}
    x – \dfrac{{5\pi }}{{12}} =  – \dfrac{\pi }{{12}} + k2\pi \\
    x – \dfrac{{5\pi }}{{12}} = \dfrac{{13\pi }}{{12}} + k2\pi 
    \end{array} \right.\\
     \Leftrightarrow \left[ \begin{array}{l}
    x = \dfrac{\pi }{3} + k2\pi \\
    x = \dfrac{{3\pi }}{2} + k2\pi 
    \end{array} \right.\left( {k \in \mathbb{Z}} \right)
    \end{array}$

Leave a reply

222-9+11+12:2*14+14 = ? ( )