Register Now

Login

Lost Password

Lost your password? Please enter your email address. You will receive a link and will create a new password via email.

222-9+11+12:2*14+14 = ? ( )

Toán Lớp 11: (2sinx-1) (2cos2x+2sinx+3)+1=4sin^2x

Toán Lớp 11: (2sinx-1) (2cos2x+2sinx+3)+1=4sin^2x

Comments ( 2 )

  1. $ \left( {2\sin x – 1} \right)\left( {2\cos 2x + 2\sin x + 3} \right) + 1 = 4{\sin ^2}x\\  \Leftrightarrow \left( {2\sin x – 1} \right)\left( {2\cos 2x + 2\sin x + 3} \right) – \left( {4{{\sin }^2}x – 1} \right) = 0\\  \Leftrightarrow \left( {2\sin x – 1} \right)\left( {2\cos 2x + 2\sin x + 3} \right) – \left( {2\sin x – 1} \right)\left( {2\sin x + 1} \right) = 0\\  \Leftrightarrow \left( {2\sin x – 1} \right)\left( {2\cos 2x + 2\sin x + 3 – 2\sin x – 1} \right) = 0\\  \Leftrightarrow \left( {2\sin x – 1} \right)\left( {2\cos 2x + 2} \right) = 0\\  \Leftrightarrow \left[ \begin{array}{l} \sin x = \dfrac{1}{2}\\ \cos 2x =  – 1 \end{array} \right. \Leftrightarrow \left[ \begin{array}{l} x = \dfrac{\pi }{6} + k2\pi \\ x = \dfrac{{5\pi }}{6} + k2\pi \\ 2x = \pi  + k2\pi  \end{array} \right.\\  \Leftrightarrow \left[ \begin{array}{l} x = \dfrac{\pi }{6} + k2\pi \\ x = \dfrac{{5\pi }}{6} + k2\pi \\ x = \dfrac{\pi }{2} + k\pi  \end{array} \right.\left( {k \in \mathbb{Z}} \right) $  

  2. $(2\sin x-1)(2\cos2x+2\sin x+3)+1=4\sin^2x$
    $\to (2\sin x-1)(2\cos 2x+2\sin x+3)=4\sin^2x-1=(2\sin x-1)(2\sin x+1)$
    $\to (2\sin x-1)(2\cos2x+2\sin x+3-2\sin x-1)=0$
    $\to (2\sin x-1)(2\cos2x+2)=0$
    $\to \left[ \begin{array}{l}\sin x=\dfrac{1}{2}\\\cos2x=-1 \end{array} \right.$
    $\to \left[ \begin{array}{l}x=\dfrac{\pi}{6}+k2\pi \\ x=\dfrac{5\pi}{6}+k2\pi \\ 2x=\pi+k2\pi \end{array} \right.$
    $\to \left[ \begin{array}{l}x=\dfrac{\pi}{6}+k2\pi \\ x=\dfrac{5\pi}{6}+k2\pi \\x=\dfrac{\pi}{2}+k\pi \end{array} \right.$

Leave a reply

222-9+11+12:2*14+14 = ? ( )