Register Now

Login

Lost Password

Lost your password? Please enter your email address. You will receive a link and will create a new password via email.

222-9+11+12:2*14+14 = ? ( )

Toán Lớp 11: 1-2cos²4x=0 Giải giúp mình với ạ cần gấp

Toán Lớp 11: 1-2cos²4x=0
Giải giúp mình với ạ cần gấp

Comments ( 2 )

  1. ~rai~
    \(1-2\cos^24x=0\\\Leftrightarrow 2\cos^24x-1=0\\\Leftrightarrow \cos8x=0\\\Leftrightarrow 8x=\dfrac{\pi}{2}+k\pi\\\Leftrightarrow x=\dfrac{\pi}{16}+k\dfrac{\pi}{8}.(k\in\mathbb{Z})\\\text{Vậy S=}\left\{\dfrac{\pi}{16}+k\dfrac{\pi}{8}\Big|k\in\mathbb{Z}\right\}.\)

  2. Giải đáp:
    $S=\left\{\dfrac{\pi}{16}+k\dfrac{\pi}{2};-\dfrac{\pi}{16}+k\dfrac{\pi}{2};\dfrac{3\pi}{16}+k\dfrac{\pi}{2};-\dfrac{3\pi}{16}+k\dfrac{\pi}{2}\,\bigg{|}\,k\in\mathbb Z\right\}$
    Lời giải và giải thích chi tiết:
    $1-2\cos^24x=0$
    $⇔2\cos^24x=1$
    $⇔\cos^24x=\dfrac{1}{2}$
    $⇔\cos4x=±\dfrac{\sqrt 2}{2}$
    TH1: $\cos4x=\dfrac{\sqrt 2}{2}$
    $⇔\left[ \begin{array}{l}4x=\dfrac{\pi}{4}+k2\pi\\4x=-\dfrac{\pi}{4}+k2\pi\end{array} \right.\,\,(k\in\mathbb Z)$
    $⇔\left[ \begin{array}{l}x=\dfrac{\pi}{16}+k\dfrac{\pi}{2}\\x=-\dfrac{\pi}{16}+k\dfrac{\pi}{2}\end{array} \right.\,\,(k\in\mathbb Z)$
    TH2: $\cos4x=-\dfrac{\sqrt 2}{2}$
    $⇔\left[ \begin{array}{l}4x=\dfrac{3\pi}{4}+k2\pi\\4x=-\dfrac{3\pi}{4}+k2\pi\end{array} \right.\,\,(k\in\mathbb Z)$
    $⇔\left[ \begin{array}{l}x=\dfrac{3\pi}{16}+k\dfrac{\pi}{2}\\x=-\dfrac{3\pi}{16}+k\dfrac{\pi}{2}\end{array} \right.\,\,(k\in\mathbb Z)$
    Vậy $S=\left\{\dfrac{\pi}{16}+k\dfrac{\pi}{2};-\dfrac{\pi}{16}+k\dfrac{\pi}{2};\dfrac{3\pi}{16}+k\dfrac{\pi}{2};-\dfrac{3\pi}{16}+k\dfrac{\pi}{2}\,\bigg{|}\,k\in\mathbb Z\right\}$.

Leave a reply

222-9+11+12:2*14+14 = ? ( )