Register Now

Login

Lost Password

Lost your password? Please enter your email address. You will receive a link and will create a new password via email.

222-9+11+12:2*14+14 = ? ( )

Toán Lớp 10: Tìm min $P=\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}+2abc$

Toán Lớp 10: Tìm min $P=\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}+2abc$

Comments ( 1 )

  1. Cho các số thực dương $a,b,c.$ Tìm $GTNN$ của:

    $P=\dfrac{1}{a^2}+\dfrac{1}{b^2}+\dfrac{1}{c^2}+2abc$

    Giải.

    Áp dụng BĐT $Cauchy$ cho $5$ số dương $\dfrac{1}{a^2},\dfrac{1}{b^2},\dfrac{1}{c^2},abc$ và $abc$, ta có:

    $P=\dfrac{1}{a^2}+\dfrac{1}{b^2}+\dfrac{1}{c^2}+2abc \\ =\dfrac{1}{a^2}+\dfrac{1}{b^2}+\dfrac{1}{c^2}+abc+abc\\ \geq 5\sqrt[5]{\dfrac{1}{a^2}.\dfrac{1}{b^2}.\dfrac{1}{c^2}.abc.abc}=5$

    Dấu $”=”$ xảy ra khi $\dfrac{1}{a^2}=\dfrac{1}{b^2}=\dfrac{1}{c^2}=abc$ hay $a=b=c=1$.

    Vậy $Min(P)=5$ khi $a=b=c=1.$

Leave a reply

222-9+11+12:2*14+14 = ? ( )