Register Now

Login

Lost Password

Lost your password? Please enter your email address. You will receive a link and will create a new password via email.

222-9+11+12:2*14+14 = ? ( )

Toán Lớp 10: Tìm GTLN của $f(x;y;z)=\dfrac{xy\sqrt{z-1}+yz\sqrt{x-2}+zx\sqrt{y-3}}{xyz} (x\ge 2 ; y\ge 3 ; z\ge 1)$

Toán Lớp 10: Tìm GTLN của $f(x;y;z)=\dfrac{xy\sqrt{z-1}+yz\sqrt{x-2}+zx\sqrt{y-3}}{xyz} (x\ge 2 ; y\ge 3 ; z\ge 1)$

Comments ( 2 )

  1. f ( x ; y ; z ) = x y √ z − 1 + y z √ x − 2 + z x √ y − 3 x y z ⇒ f ( x ; y ; z ) = x y √ z − 1 x y z + y z √ x − 2 x y z + z x √ y − 3 x y z ⇒ f ( x ; y ; z ) = √ z − 1 z + √ x − 2 x + √ y − 3 y Áp dụng bất đẳng thức Cauchy ta có: √ z − 1 ⩽ 1 + z − 1 2 = z 2 ⇒ √ z − 1 z ⩽ z 2 z = 1 2 √ x − 2 = √ 2 . √ x − 2 √ 2 ⩽ 2 + x − 2 2 √ 2 = x 2 √ 2 ⇒ √ x − 2 x ⩽ 1 2 √ 2 √ y − 3 = √ 3 . √ y − 3 √ 3 ⩽ 3 + y − 3 2 √ 3 = y 2 √ 3 ⇒ √ y − 3 y ⩽ 1 2 √ 3 ⇒ f ( x ; y ; z ) ⩽ 1 2 + 1 2 √ 2 + 1 2 √ 3 = 6 + 3 √ 2 + 2 √ 3 12 Vậy max f ( x ; y ; z ) = 6 + 3 √ 2 + 2 √ 3 12 khi ⎧ ⎨ ⎩ x = 4 y = 6 z = 2

  2. Giải đáp + Lời giải và giải thích chi tiết:
    $f(x;y;z)=\dfrac{xy\sqrt{z-1}+yz\sqrt{x-2}+zx\sqrt{y-3}}{xyz}$
    $⇒ f(x;y;z)=\dfrac{xy\sqrt{z-1}}{xyz}+\dfrac{yz\sqrt{x-2}}{xyz}+\dfrac{zx\sqrt{y-3}}{xyz}$
    $⇒ f(x;y;z)=\dfrac{\sqrt{z-1}}z+\dfrac{\sqrt{x-2}}x+\dfrac{\sqrt{y-3}}y$
    Áp dụng bất đẳng thức Cauchy ta có:
    $\sqrt{z-1} \leqslant \dfrac{1+z-1}2 = \dfrac{z}2 ⇒ \dfrac{\sqrt{z-1}}z \leqslant \dfrac{z}{2z}=\dfrac12$
    $\sqrt{x-2} = \dfrac{\sqrt 2 . \sqrt{x-2}}{\sqrt 2} \leqslant \dfrac{2+x-2}{2\sqrt{2}}=\dfrac{x}{2\sqrt 2} ⇒ \dfrac{\sqrt{x-2}}x \leqslant  \dfrac{1}{2\sqrt 2}$
    $\sqrt{y-3}=\dfrac{\sqrt 3 . \sqrt{y-3}}{\sqrt 3}\leqslant \dfrac{3+y-3}{2\sqrt 3}=\dfrac{y}{2\sqrt 3}⇒  \dfrac{\sqrt{y-3}}y \leqslant \dfrac1{2\sqrt 3}$
    $⇒ f(x;y;z)\leqslant \dfrac12+\dfrac{1}{2\sqrt 2}+\dfrac1{2\sqrt 3} = \dfrac{6+3\sqrt 2 +2\sqrt 3}{12}$
    Vậy $\max f(x;y;z)=\dfrac{6+3\sqrt 2 +2\sqrt 3}{12}$ khi $\begin{cases}x=4\\y=6\\z=2\end{cases}$

Leave a reply

222-9+11+12:2*14+14 = ? ( )

About Lyla Anh