Register Now

Login

Lost Password

Lost your password? Please enter your email address. You will receive a link and will create a new password via email.

222-9+11+12:2*14+14 = ? ( )

Toán Lớp 8: Cho `a+b+c=1` và `a^3+b^3+c^3=3abc`. Chứng tỏ `a=b=c`.

Toán Lớp 8: Cho a+b+c=1 và a^3+b^3+c^3=3abc.
Chứng tỏ a=b=c.

Comments ( 2 )

  1. $\\$
    a^3 + b^3 +c^3=3abc
    ⇒ a^3 + b^3 +c^3-3abc=0
    ⇒ (a+b)^3 +c^3-  3ab (a+b) -3abc=0
    ⇒ (a+b+c)[(a+b)^2 – (a+b)c +c^2] -3ab (a+b+c)=0
    ⇒ (a+b+c)(a^2 + b^2 +c^2 – ab-bc-ac)=0
    ⇒ a^2 +b^2+c^2 -ab-ac-bc=0 (Vì a+b+c=1)
    ⇒ 2a^2 +2b^2 +2c^2-2ab-2ac-2bc=0
    ⇒ (a-b)^2 +(b-c)^2 + (a-c)^2=0
    Vì (a-b)^2 ≥0, (b-c)^2 ≥0, (a-c)^2 ≥0∀a,b,c
    => (a-b)^2 +(b-c)^2 + (a-c)^2 ≥0∀a,b,c
    Dấu “=” xảy ra khi :
    (a-b)^2=0 ,(b-c)^2=0, (a-c)^2=0
    ⇔ a-b=0,b-c=0,a-c=0
    ⇔a=b,b=c,a=c
    ⇔a=b=c
     

  2. +)a^3+b^3+c^3=3abc
    <=>a^3+b^3+c^3-3abc=0
    <=>a^3+3a^2b+3ab^2+b^3+c^3-3a^2b-3ab^2-3abc=0
    <=>(a+b)^3+c^3-3ab(a+b+c)=0
    <=>(a+b+c)[(a+b)^2-(a+b)c+c^2]-3ab(a+b+c)=0
    <=>(a+b+c)(a^2+2ab+b^2-ca-bc+c^2-3ab)=0
    <=>(a+b+c)(a^2+b^2+c^2-ab-bc-ca)=0
    Vì a+b+c=1
    =>a^2+b^2+c^2-ab-bc-ca=0
    <=>2(a^2+b^2+c^2-ab-bc-ca)=0
    <=>2a^2+2b^2+2c^2-2ab-2bc-2ca=0
    <=>(a^2-2ab+b^2)+(b^2-2bc+c^2)+(c^2-2ca+a^2)=0
    <=>(a-b)^2+(b-c)^2+(c-a)^2=0
    <=>{(a-b=0),(b-c=0),(c-a=0):}
    <=>{(a=b),(b=c),(c=a):}
    ->a=b=c
    Vậy : a=b=c

Leave a reply

222-9+11+12:2*14+14 = ? ( )

About Tùy Linh