Register Now

Login

Lost Password

Lost your password? Please enter your email address. You will receive a link and will create a new password via email.

222-9+11+12:2*14+14 = ? ( )

Toán Lớp 8: Tính GTNN của $P=$ $x^{3}$ + $y^{3}$ + $2x^{2}$$y^{2}$ biết $x+y=1$

Toán Lớp 8: Tính GTNN của $P=$ $x^{3}$ + $y^{3}$ + $2x^{2}$$y^{2}$ biết $x+y=1$

Comments ( 1 )

  1. $\\$
    x+y=1
    <=> x=1-y
    P=x^3+y^3+2x^2y^2
    =(x+y)^3-3xy(x+y)+2x^2y^2
    =2x^2y^2 – 3xy+1
    = 2 (x^2y^2 – 3/2 xy + 1/2)
    = 2 (x^2y^2 – 2 . xy . 3/4 + 9/16 – 1/16)
    = 2 (xy-3/4)^2 – 1/8
    =2 [(1-y) y – 3/4]^2- 1/8
    = 2 (y – y^2 – 3/4)^2-1/8
    = 2 (y^2 -y+ 3/4)^2-1/8
    = 2 (y^2 – 2 . y . 1/2 + 1/4 + 1/2)^2 – 1/8
    = 2 [(y-1/2)^2 + 1/2]^2 -1/8
    Do (y-1/2)^2>=0
    => (y-1/2)^2 + 1/2>=1/2
    => [(y-1/2)^2+1/2]^2 >=1/4
    => 2 [(y-1/2)^2+1/2]^2 >= 1/2
    => 2 [(y-1/2)^2+1/2]^2 – 1/8 >= 1/2 – 1/8 = 3/8
    => P>=3/8
    Dấu “=” xảy ra khi :
    (y-1/2)^2=0<=> y-1/2=0<=> y=1/2
    Do đó : x=1/2
    Vậy min P=3/8<=>x=y=1/2

Leave a reply

222-9+11+12:2*14+14 = ? ( )

About Phi Nhung