Register Now

Login

Lost Password

Lost your password? Please enter your email address. You will receive a link and will create a new password via email.

222-9+11+12:2*14+14 = ? ( )

Toán Lớp 8: tìm `n^3-2n^2+3n+3` chia hết cho `n-1`

Toán Lớp 8: tìm n^3-2n^2+3n+3 chia hết cho n-1

Comments ( 2 )

  1. Ta có: n^3-2n^2+3n+3
    =n^3-4n^2+4n+2n-n+3
    =n(n^2-4n+4)-n+3
    =n(n-2)^2-n+3
    =n(n-2-1)(n-2+1)+3
    =n(n-3)(n-1)+3
    Vì: n(n-3)(n-1)⋮n-1
    → n(n-3)(n-1)+3⋮n-1
    Khi 3⋮n-1
    →n-1∈Ư(3)
    →n-1∈{1;-1;3;-3}
    →n∈{2;0;4;-2}

  2. Giải đáp:
     
    Lời giải và giải thích chi tiết:
    n^3 -2n^2 +3n + 3 \vdots n -1
    n^3 – 3n^2 + 3n – 1 + n^2 + 4 \vdots n -1
    (n -1)^3 + n^2 + 4 \vdots n -1
    (n -1)^3 + n^2 – 1 + 5 \vdots n -1
    (n -1)^3 + (n -1)(n +1) + 5 \vdots n -1
    Vì:
    {(n -1 \vdots n -1 => (n -1)^3 \vdots n -1),(n – 1 \vdots n -1 => (n -1)(n +1) \vdots n -1):}
    => 5 \vdots n -1
    => n – 1 \in Ư (5)
    => n – 1 \in { +- 1; +- 5}
    => n \in {2; 0; 6; -4}

Leave a reply

222-9+11+12:2*14+14 = ? ( )

About Kim Dung