Register Now

Login

Lost Password

Lost your password? Please enter your email address. You will receive a link and will create a new password via email.

222-9+11+12:2*14+14 = ? ( )

Toán Lớp 11: Giải phương trình lượng giác: `(sin^4 2x+cos^4 2x)/(tan(π/4-x).tan(π/4+x))=cos^4 4x`

Toán Lớp 11: Giải phương trình lượng giác:
(sin^4 2x+cos^4 2x)/(tan(π/4-x).tan(π/4+x))=cos^4 4x

Comments ( 2 )

  1. (sin^4 2x+cos^4 2x)/(tan(π/4-x).tan(π/4+x))= cos^4 x
    $\Leftrightarrow \dfrac{\sin ^4 (2x)+ \cos ^4(2x)}{\dfrac{ \tan \Big(\dfrac{\pi}{2} \Big) – \tan x}{1+ \tan \Big(\dfrac{\pi}{4}\Big) \tan x}.  \dfrac{\tan \Big(\dfrac{\pi}{4}\Big)+ \tan x}{1-\tan \Big(\dfrac{\pi}{4}\Big) \tan x}}= \cos ^4x$
    $\Leftrightarrow \dfrac{\sin ^4 (2x)+ \cos ^4(2x)}{\dfrac{1-\tan x}{1+\tan x}.  \dfrac{1+ \tan x}{1-\tan x}} = \cos ^4 x$
    $\Leftrightarrow \sin ^4 (2x)+ \cos ^4(2x) = \cos ^4 x$
    $\Leftrightarrow (2 \sin x. \cos x)^4 + \cos ^4 2x –  \cos ^4 x =0$
    $\Leftrightarrow 16 \sin ^4 x \cos ^4 x + \cos ^8 x –  \sin ^8 x – \cos ^4 x =0$
    $\Leftrightarrow \cos ^4 x. (16 \sin ^4x + \cos ^2 x-1-\tan ^4 x.\sin ^4 x) =0$
    $\to x=\dfrac{\pi}{2}+k\pi$ 
    Phương trình sau vẫn chưa có cách giải. 

  2.  $\dfrac{\sin^42x+\cos^42x}{\tan \left(\dfrac \pi 4-x\right)\tan \left(\dfrac \pi 4+x\right)}=\cos^4 4x$
    ĐKXĐ: $x\ne \dfrac{\pi}4+\dfrac{k\pi}2$
    $⇔ \sin^4 2x+\cos^4 2x=\cos^4 x$ (Mẫu $= 1$)
    $⇔(1-\cos 4x)^2+(1+\cos 4x)^2=4\cos^4 4x$
    $⇔ 2\cos^44x-\cos^24x-1=0$
    $⇔ \cos^24x-1=0$
    $⇔ \cos x=\dfrac12$
    $⇔ x=\pm \dfrac \pi3+k2\pi\ (k\in \mathbb{Z})$ (thỏa mãn)
    Vậy $x=\pm \dfrac \pi3+k2\pi\ (k\in \mathbb{Z})$

Leave a reply

222-9+11+12:2*14+14 = ? ( )