Register Now

Login

Lost Password

Lost your password? Please enter your email address. You will receive a link and will create a new password via email.

222-9+11+12:2*14+14 = ? ( )

Toán Lớp 11: 1. Giải pt sau (1-√2)(1+sinx+cosx)=sin2x

Toán Lớp 11: 1. Giải pt sau
(1-√2)(1+sinx+cosx)=sin2x

Comments ( 2 )

  1. Giải đáp:
     
    Lời giải và giải thích chi tiết:
     (1 – √2)(1 + sinx – cosx) = sin2x;
    (sinx -cosx )=t
    sin2x =1-t^2
    <=>(1-√2)(1+t)=1-t^2
    <=t^2-(√2-1)t -√2=0
    (t+1)(t-√2)=0
    t=-1=>x=3π/2+k2π; x=k2π{k€z)
    t=√2
    x=3π/4+kπ

  2. \(\begin{array}{l}
    \quad \left(1 – \sqrt2\right)\left(1 + \sin x + \cos x\right) = \sin2x\\
    \text{Đặt}\ t = \sin x + \cos x\quad \left(|t| \leqslant \sqrt2\right)\\
    \Rightarrow t^2 = 1 + \sin2x\\
    \Rightarrow t^2 – 1 = \sin2x\\
    \text{Phương trình trở thành:}\\
    \quad \left(1 – \sqrt2\right)(1 + t) = t^2 – 1\\
    \Leftrightarrow t^2 – \left(1-\sqrt2\right)t – 2 + \sqrt2 =0\\
    \Leftrightarrow \left[\begin{array}{l}t = -1\\t = 2- \sqrt2\end{array}\right.\\
    +)\quad \text{Với $t = -1$ ta được:}\\
    \quad \sin x + \cos x = -1\\
    \Leftrightarrow \sqrt2\sin\left(x + \dfrac{\pi}{4}\right) = -1\\
    \Leftrightarrow \sin\left(x + \dfrac{\pi}{4}\right) = -\dfrac{\sqrt2}{2}\\
    \Leftrightarrow \left[\begin{array}{l}x + \dfrac{\pi}{4} = -\dfrac{\pi}{4} + k2\pi\\x + \dfrac{\pi}{4} = \dfrac{5\pi}{4} + k2\pi\end{array}\right.\\
    \Leftrightarrow \left[\begin{array}{l}x = – \dfrac{\pi}{2} + k2\pi\\x = \pi + k2\pi\end{array}\right.\quad (k\in\Bbb Z)\\
    +)\quad \text{Với $t = 2 -\sqrt2$ ta được:}\\
    \quad \sin x + \cos x =2 -\sqrt2\\
    \Leftrightarrow \sqrt2\sin\left(x + \dfrac{\pi}{4}\right) = 2-\sqrt2\\
    \Leftrightarrow \sin\left(x + \dfrac{\pi}{4}\right) =\sqrt2 -1\\
    \Leftrightarrow \left[\begin{array}{l}x + \dfrac{\pi}{4} = \arcsin\left(\sqrt2 – 1\right) + k2\pi\\x + \dfrac{\pi}{4} = \pi – \arcsin\left(\sqrt2 – 1\right)+ k2\pi\end{array}\right.\\
    \Leftrightarrow \left[\begin{array}{l}x =\arcsin\left(\sqrt2 – 1\right) – \dfrac{\pi}{4} + k2\pi\\x =\dfrac{3\pi}{4}-\arcsin\left(\sqrt2 – 1\right) + k2\pi\end{array}\right.\quad (k\in\Bbb Z)\\
    \end{array}\)

Leave a reply

222-9+11+12:2*14+14 = ? ( )