Register Now

Login

Lost Password

Lost your password? Please enter your email address. You will receive a link and will create a new password via email.

222-9+11+12:2*14+14 = ? ( )

Toán Lớp 11: Giải phương trình 1. sinx.cos2x + $cos^{2}x$ + $cos^{2}x$ ($tan^{2}x$ – 1) + $2sin^{3}x$ =0 2. cos3x+cos2x-cosx-1=0

Toán Lớp 11: Giải phương trình
1. sinx.cos2x + $cos^{2}x$ + $cos^{2}x$ ($tan^{2}x$ – 1) + $2sin^{3}x$ =0
2. cos3x+cos2x-cosx-1=0

Comments ( 1 )

  1. $\begin{array}{l}
    \sin x\cos 2x + {\cos ^2}x + {\cos ^2}x\left( {{{\tan }^2}x – 1} \right) + 2{\sin ^3}x = 0\\
     \Leftrightarrow \dfrac{1}{2}\left( {\sin 3x – \sin x} \right) + {\cos ^2}x + {\cos ^2}x.\dfrac{{{{\sin }^2}x}}{{{{\cos }^2}x}} – {\cos ^2}x + 2{\sin ^3}x = 0\\
     \Leftrightarrow \dfrac{1}{2}\sin 3x – \dfrac{1}{2}\sin x + {\sin ^2}x + 2{\sin ^3}x = 0\\
     \Leftrightarrow \dfrac{1}{2}\left( {3\sin x – 4{{\sin }^3}x} \right) – \dfrac{1}{2}\sin x + {\sin ^2}x + 2{\sin ^3}x = 0\\
     \Leftrightarrow \dfrac{3}{2}\sin x – 2{\sin ^3}x – \dfrac{1}{2}\sin x + {\sin ^2}x + 2{\sin ^3}x = 0\\
     \Leftrightarrow {\sin ^2}x + \dfrac{1}{2}\sin x = 0\\
     \Leftrightarrow \sin x\left( {\sin x + \dfrac{1}{2}} \right) = 0\\
     \Leftrightarrow \left[ \begin{array}{l}
    \sin x = 0\\
    \sin x =  – \dfrac{1}{2}
    \end{array} \right. \Leftrightarrow \left[ \begin{array}{l}
    x = k\pi \\
    x = \dfrac{{ – \pi }}{6} + k2\pi \\
    x = \dfrac{{7\pi }}{6} + k2\pi 
    \end{array} \right.\left( {k \in \mathbb{Z}} \right)\\
    2.\cos 3x + \cos 2x – \cos x – 1 = 0\\
     \Leftrightarrow \left( {\cos 3x – \cos x} \right) + \left( {\cos 2x – 1} \right) = 0\\
     \Leftrightarrow  – 2\sin 2x\sin x + \left( {1 – 2{{\sin }^2}x – 1} \right) = 0\\
     \Leftrightarrow  – 2\sin 2x\sin x – 2{\sin ^2}x = 0\\
     \Leftrightarrow  – 2\sin x\left( {\sin 2x + \sin x} \right) = 0\\
     \Leftrightarrow \left[ \begin{array}{l}
    \sin x = 0\\
    \sin 2x =  – \sin x = \sin \left( { – x} \right)
    \end{array} \right.\\
     \Leftrightarrow \left[ \begin{array}{l}
    x = k\pi \\
    2x =  – x + k2\pi \\
    2x = \pi  + x + k2\pi 
    \end{array} \right.\\
     \Leftrightarrow \left[ \begin{array}{l}
    x = k\pi \\
    3x = k2\pi \\
    x = \pi  + k2\pi 
    \end{array} \right. \Leftrightarrow \left[ \begin{array}{l}
    x = k\pi \\
    x = \dfrac{{k2\pi }}{3}
    \end{array} \right.\left( {k \in \mathbb{Z}} \right)\\

    \end{array}$

     

Leave a reply

222-9+11+12:2*14+14 = ? ( )