Register Now

Login

Lost Password

Lost your password? Please enter your email address. You will receive a link and will create a new password via email.

222-9+11+12:2*14+14 = ? ( )

Toán Lớp 8: tim gia tri nho nhat cua cac bieu thuc A=(x+1)(2x-1),B=4x^2-4xy+2y^2+1

Toán Lớp 8: tim gia tri nho nhat cua cac bieu thuc A=(x+1)(2x-1),B=4x^2-4xy+2y^2+1

Comments ( 2 )

  1. \qquad A=(x+1)(2x-1)
    A=2x^2-x+2x-1
    A=2x^2+x-1
    A=2(x^2+1/2x-1/2)
    A=2(x^2+2.x. 1/4+1/16-9/16)
    A=2(x+1/4)^2-9/8>=-9/8
    Dấu = xảy ra khi x+1/4=0<=>x=-1/4
    Vậy A_(min)=-9/8<=>x=-1/4
    \qquad B=4x^2-4xy+2y^2+1
    B=(4x^2-4xy+y^2)+y^2+1
    B=(2x-y)^2+y^2+1>=1
    Dấu = xảy ra khi {(2x-y=0),(y=0):}<=>x=y=0
    Vậy B_(min)=1<=>x=y=0

  2. $A\,=(x+1)(2x-1)\\\quad =2x^2+x-1\\\quad =2\left(x^2+\dfrac{1}{2}x-\dfrac{1}{2}\right)\\\quad=2\left(x^2+2.x.\dfrac{1}{4}+\dfrac{1}{16}-\dfrac{9}{16}\right)\\\quad=2\left(x+\dfrac{1}{4}\right)^2-\dfrac{9}{8}$
    Nhận thấy: $\left(x+\dfrac{1}{4}\right)^2\ge 0$
    $↔2\left(x+\dfrac{1}{4}\right)^2\ge 0\\↔2\left(x+\dfrac{1}{4}\right)^2-\dfrac{9}{8}\ge -\dfrac{9}{8}$
    $→\min A=-\dfrac{9}{8}$
    $→$ Dấu “=” xảy ra khi $x+\dfrac{1}{4}=0$
    $↔x=-\dfrac{1}{4}$
    Vậy $\min A=-\dfrac{9}{8}$ với $x=-\dfrac{1}{4}$
    $B\,=4x^2-4xy+2y^2+1\\\quad =4x^2-4xy+y^2+y^2+1\\\quad =(4x^2-4xy+y^2)+y^2+1\\\quad =(2x-y)^2+y^2+1$
    Nhận thấy: $\begin{cases}(2x-y)^2\ge 0\\y^2\ge 0\end{cases}$
    $↔(2x-y)^2+y^2\ge 0\\↔(2x-y)^2+y^2+1\ge 1\\→\min B=1$
    $→$ Dấu “=” xảy ra khi $\begin{cases}2x-y=0\\y=0\end{cases}$
    $↔\begin{cases}2x=0\\y=0\end{cases}\\↔\begin{cases}x=0\\y=0\end{cases}\\↔x=y=0$
    Vậy $\min B=1$ khi $x=y=0$
     

Leave a reply

222-9+11+12:2*14+14 = ? ( )

About Khanh