Register Now

Login

Lost Password

Lost your password? Please enter your email address. You will receive a link and will create a new password via email.

222-9+11+12:2*14+14 = ? ( )

Toán Lớp 8: Tìm MinA=x^2-4x+y^2+6y+15 Tìm MaxB=(3-x)(x+5)

Toán Lớp 8: Tìm MinA=x^2-4x+y^2+6y+15
Tìm MaxB=(3-x)(x+5)

Comments ( 2 )

  1. A=x^2-4x+y^2+6y+15
    A=x^2-4x+4+y^2+6y+9+2
    A=(x^2-4x+4)+(y^2+6y+9)+2
    A=(x-2)^2+(y+3)^2+2
    Ta có:
    (x-2)^2≥0∀x
    (y+3)^2≥0∀y
    ⇒(x-2)^2+(y+3)^2+2≥2∀x,y
    Vậy min A bằng 2 khi x=2;y=-3
    $\\$
    B=(3-x)(x+5)
    B=3x+15-x^2-5x
    B=-x^2-2x+15
    B=-(x^2-2x+15)
    B=-(x^2-2x+1)+16
    B=-(x-1)^2+16
    Ta có:
    (x-1)^2≥0∀x
    ⇒-(x-1)^2≤0∀x
    ⇒-(x-1)^2+16≤16∀x
    Vậy max B bằng 16 khi x-1=0⇔x=1

  2. a)
    A = x^2 – 4x + y^2 + 6y + 15
    = (x^2 – 4x + 4) + (y^2 + 6y +9) + 2
    =  (x^2 – 2 . x . 2 + 2^2) + (y^2 + 2 . y . 3 + 3^2) + 2
    = (x-2)^2 + (y+3)^2 + 2
    \forall x ; y ta có :
    (x-2)^2 \ge 0
    (y+3)^2 \ge 0
    => (x-2)^2+ (y+3)^2 \ge 0
    => (x-2)^2 + (y+3)^2 + 2 \ge 2
    => A \ge 2
    Dấu = xảy ra <=> {(x-2=0),(y+3=0):}
    <=> {(x =2),(y=-3):}
    Vậy \text{Min}_A = 2 <=> {(x =2),(y=-3):}
    b)
    B = (3-x)(x+5)
    =  3x + 15 – x^2 – 5x
    = -x^2 – 2x + 15
    = -(x^2 + 2x + 1) + 16
    = -(x^2 + 2 . x . 1 + 1^2) + 16
    = -(x+1)^2 + 16
    \forall x ta có :
    (x+1)^2 \ge 0
    => -(x+1)^2 \le 0
    => -(x+1)^2+ 16 \le 16
    => B \le 16
    Dấu = xảy ra <=> x+1=0<=>x=-1
    Vậy \text{Max}_B = 16 <=> x = -1
     

Leave a reply

222-9+11+12:2*14+14 = ? ( )