Register Now

Login

Lost Password

Lost your password? Please enter your email address. You will receive a link and will create a new password via email.

222-9+11+12:2*14+14 = ? ( )

Toán Lớp 11: mấy câu này khó lắm hả mn :(( hỏi lần 2 huhu 1) sin5x + cos5x = √2 cos13x 2) cos7x – sin5x – √3 ( cos5x – sin7x) 3) sin8x – cos6x = √3

Toán Lớp 11: mấy câu này khó lắm hả mn :(( hỏi lần 2 huhu
1) sin5x + cos5x = √2 cos13x
2) cos7x – sin5x – √3 ( cos5x – sin7x)
3) sin8x – cos6x = √3 ( sin6x + cos8x )

Comments ( 1 )

  1. Giải đáp:
    \(\begin{array}{l}
    1,\,\,\,\,\left[ \begin{array}{l}
    x = \dfrac{\pi }{{72}} + \dfrac{{k\pi }}{9}\\
    x =  – \dfrac{\pi }{{32}} + \dfrac{{k\pi }}{4}
    \end{array} \right.\,\,\,\,\,\left( {k \in Z} \right)\\
    2,\,\,\,\,\left[ \begin{array}{l}
    x = \dfrac{\pi }{{12}} + k\pi \\
    x = \dfrac{\pi }{{24}} + \dfrac{{k\pi }}{6}
    \end{array} \right.\,\,\,\,\left( {k \in Z} \right)\\
    3,\,\,\,\,\,\left[ \begin{array}{l}
    x = \dfrac{\pi }{4} + k\pi \\
    x = \dfrac{\pi }{{12}} + \dfrac{{k\pi }}{7}
    \end{array} \right.\,\,\,\left( {k \in Z} \right)
    \end{array}\)
    Lời giải và giải thích chi tiết:
     Ta có:
    \(\begin{array}{l}
    1,\\
    \sin 5x + \cos 5x = \sqrt 2 \cos 13x\\
     \Leftrightarrow \dfrac{1}{{\sqrt 2 }}.\sin 5x + \dfrac{1}{{\sqrt 2 }}.\cos 5x = \cos 13x\\
     \Leftrightarrow \sin 5x.\cos \dfrac{\pi }{4} + \cos 5x.\sin \dfrac{\pi }{4} = \cos 13x\\
     \Leftrightarrow \sin \left( {5x + \dfrac{\pi }{4}} \right) = \cos 13x\\
     \Leftrightarrow \cos \left[ {\dfrac{\pi }{2} – \left( {5x + \dfrac{\pi }{4}} \right)} \right] = \cos 13x\\
     \Leftrightarrow \cos \left( {\dfrac{\pi }{4} – 5x} \right) = \cos 13x\\
     \Leftrightarrow \left[ \begin{array}{l}
    \dfrac{\pi }{4} – 5x = 13x + k2\pi \\
    \dfrac{\pi }{4} – 5x =  – 13x + k2\pi 
    \end{array} \right.\\
     \Leftrightarrow \left[ \begin{array}{l}
    18x = \dfrac{\pi }{4} + k2\pi \\
    8x =  – \dfrac{\pi }{4} + k2\pi 
    \end{array} \right.\\
     \Leftrightarrow \left[ \begin{array}{l}
    x = \dfrac{\pi }{{72}} + \dfrac{{k\pi }}{9}\\
    x =  – \dfrac{\pi }{{32}} + \dfrac{{k\pi }}{4}
    \end{array} \right.\,\,\,\,\,\left( {k \in Z} \right)\\
    2,\\
    \cos 7x – \sin 5x = \sqrt 3 \left( {\cos 5x – \sin 7x} \right)\\
     \Leftrightarrow \cos 7x + \sqrt 3 \sin 7x = \sqrt 3 \cos 5x + \sin 5x\\
     \Leftrightarrow \dfrac{{\sqrt 3 }}{2}\sin 7x + \dfrac{1}{2}\cos 7x = \dfrac{1}{2}\sin 5x + \dfrac{{\sqrt 3 }}{2}\cos 5x\\
     \Leftrightarrow \sin 7x.\cos \dfrac{\pi }{6} + \cos 7x.\sin \dfrac{\pi }{6} = \sin 5x.\cos \dfrac{\pi }{3} + \cos 5x.\sin \dfrac{\pi }{3}\\
     \Leftrightarrow \sin \left( {7x + \dfrac{\pi }{6}} \right) = \sin \left( {5x + \dfrac{\pi }{3}} \right)\\
     \Leftrightarrow \left[ \begin{array}{l}
    7x + \dfrac{\pi }{6} = 5x + \dfrac{\pi }{3} + k2\pi \\
    7x + \dfrac{\pi }{6} = \pi  – \left( {5x + \dfrac{\pi }{3}} \right) + k2\pi 
    \end{array} \right.\\
     \Leftrightarrow \left[ \begin{array}{l}
    7x + \dfrac{\pi }{6} = 5x + \dfrac{\pi }{3} + k2\pi \\
    7x + \dfrac{\pi }{6} = \dfrac{{2\pi }}{3} – 5x + k2\pi 
    \end{array} \right.\\
     \Leftrightarrow \left[ \begin{array}{l}
    2x = \dfrac{\pi }{6} + k2\pi \\
    12x = \dfrac{\pi }{2} + k2\pi 
    \end{array} \right.\\
     \Leftrightarrow \left[ \begin{array}{l}
    x = \dfrac{\pi }{{12}} + k\pi \\
    x = \dfrac{\pi }{{24}} + \dfrac{{k\pi }}{6}
    \end{array} \right.\,\,\,\,\left( {k \in Z} \right)\\
    3,\\
    \sin 8x – \cos 6x = \sqrt 3 \left( {\sin 6x + \cos 8x} \right)\\
     \Leftrightarrow \sin 8x – \sqrt 3 \cos 8x = \sqrt 3 \sin 6x + \cos 6x\\
     \Leftrightarrow \dfrac{1}{2}\sin 8x – \dfrac{{\sqrt 3 }}{2}\cos 8x = \dfrac{{\sqrt 3 }}{2}\sin 6x + \dfrac{1}{2}\cos 6x\\
     \Leftrightarrow \sin 8x.\cos \dfrac{\pi }{3} – \cos 8x.\sin \dfrac{\pi }{3} = \sin 6x.\cos \dfrac{\pi }{6} + \cos 6x.\sin \dfrac{\pi }{6}\\
     \Leftrightarrow \sin \left( {8x – \dfrac{\pi }{3}} \right) = \sin \left( {6x + \dfrac{\pi }{6}} \right)\\
     \Leftrightarrow \left[ \begin{array}{l}
    8x – \dfrac{\pi }{3} = 6x + \dfrac{\pi }{6} + k2\pi \\
    8x – \dfrac{\pi }{3} = \pi  – \left( {6x + \dfrac{\pi }{6}} \right) + k2\pi 
    \end{array} \right.\\
     \Leftrightarrow \left[ \begin{array}{l}
    8x – \dfrac{\pi }{3} = 6x + \dfrac{\pi }{6} + k2\pi \\
    8x – \dfrac{\pi }{3} = \dfrac{{5\pi }}{6} – 6x + k2\pi 
    \end{array} \right.\\
     \Leftrightarrow \left[ \begin{array}{l}
    2x = \dfrac{\pi }{2} + k2\pi \\
    14x = \dfrac{{7\pi }}{6} + k2\pi 
    \end{array} \right.\\
     \Leftrightarrow \left[ \begin{array}{l}
    x = \dfrac{\pi }{4} + k\pi \\
    x = \dfrac{\pi }{{12}} + \dfrac{{k\pi }}{7}
    \end{array} \right.\,\,\,\left( {k \in Z} \right)
    \end{array}\)

Leave a reply

222-9+11+12:2*14+14 = ? ( )

About Lyla Anh