Register Now

Login

Lost Password

Lost your password? Please enter your email address. You will receive a link and will create a new password via email.

222-9+11+12:2*14+14 = ? ( )

Toán Lớp 6: Chứng mình S chia hết cho 4 S=3+3^2+3^3+…+3^99+3^100

Toán Lớp 6: Chứng mình S chia hết cho 4
S=3+3^2+3^3+…+3^99+3^100

Comments ( 2 )

  1. Giải đáp:
    $\\$
    S = 3 + 3^2  + … + 3^{99} + 3^{100}
    -> S = (3 + 3^2) + … + (3^{99} + 3^{100})
    -> S = (3.1 + 3.3) + … + (3^{99} . 1 + 3^{99}.3)
    -> S = 3 . (1+3) + … + 3^{99}.(1+3)
    -> S = 3.4 + … + 3^{99}.4
    -> S = 4 (3+…+3^{99})
    Vì 4 chia hết cho 4
    -> 4 (3+…+3^{99}) chia hết cho 4
    -> S chia hết cho 4 (đpcm)
     

  2. Giải đáp:
    S\vdots4
    Trình bày lời giải:
    S=3+3^2+3^3+…+3^99+3^100
    S=(3+3^2)+(3^3+3^4)+(3^5+3^6)+…+(3^99+3^100)
    S=3.(1+3)+3^3.(1+3)+3^5.(1+3)+…+3^99.(1+3)
    S=3.4+3^3 . 4+3^5 . 4+…+3^99 . 4
    S=4.(3+3^3+3^5+…+3^99)
    Ta có:
    4\vdots4
    =>4.(3+3^3+3^5+…+3^99)\vdots4
    =>S\vdots4(ĐPCM)
    Vậy S\vdots4

Leave a reply

222-9+11+12:2*14+14 = ? ( )