Register Now

Login

Lost Password

Lost your password? Please enter your email address. You will receive a link and will create a new password via email.

222-9+11+12:2*14+14 = ? ( )

Toán Lớp 9: cho a ≥0 Tìm GTNN của S=a^2+a/(căn a)

Toán Lớp 9: cho a ≥0
Tìm GTNN của
S=a^2+a/(căn a)

Comments ( 1 )

  1. Giải đáp:
    $min_S=15\dfrac{3^\tfrac{3}{5}}{2^\tfrac{4}{5}}\Leftrightarrow a=\dfrac{3^\tfrac{4}{5}}{2^\tfrac{2}{5}}$
    Lời giải và giải thích chi tiết:
    $S=a^2+\dfrac{18}{\sqrt{a}}(a>0)\\ =a^2+\dfrac{18}{4\sqrt{a}}+\dfrac{18}{4\sqrt{a}}+\dfrac{18}{4\sqrt{a}}+\dfrac{18}{4\sqrt{a}}\\ \ge 5\sqrt[5]{a^2.\dfrac{18}{4\sqrt{a}}.\dfrac{18}{4\sqrt{a}}.\dfrac{18}{4\sqrt{a}}.\dfrac{18}{4\sqrt{a}}}(Cauchy)\\ =5\sqrt[5]{\dfrac{18^4}{4^4}}\\ =5\sqrt[5]{\dfrac{9^4}{2^4}}\\ =5\sqrt[5]{\dfrac{3^8}{2^4}}\\ =5\dfrac{3^\tfrac{8}{5}}{2^\tfrac{4}{5}}\\ =15\dfrac{3^\tfrac{3}{5}}{2^\tfrac{4}{5}}$
    Dấu “=” xảy ra $\Leftrightarrow a^2=\dfrac{18}{4\sqrt{a}}$
    $\Leftrightarrow a^\tfrac{5}{2}=\dfrac{9}{2}\\ \Leftrightarrow a=\sqrt[\tfrac{5}{2}]{\dfrac{9}{2}}=\dfrac{9^\tfrac{2}{5}}{2^\tfrac{2}{5}}=\dfrac{3^\tfrac{4}{5}}{2^\tfrac{2}{5}}$

Leave a reply

222-9+11+12:2*14+14 = ? ( )

About Tùy Linh