Register Now

Login

Lost Password

Lost your password? Please enter your email address. You will receive a link and will create a new password via email.

222-9+11+12:2*14+14 = ? ( )

Toán Lớp 8: CMR : nếu $a_{1}$ + $a_{2}$ +$a_{3}$ chia hết cho 30 thì $a^{5}_{1}$ + $a^{5}_{2}$ +$a^{5}_{3}$ chia hết cho 30

Toán Lớp 8: CMR : nếu $a_{1}$ + $a_{2}$ +$a_{3}$ chia hết cho 30 thì $a^{5}_{1}$ + $a^{5}_{2}$ +$a^{5}_{3}$ chia hết cho 30

Comments ( 1 )

  1. Xét hiệu : $a_1^5 + a_2^5 + a_3^5 – (a_1+a_2+a_3)$
    $ = a_1.(a_1^4 – 1) + a_2.(a_2^4-1) + a_3.(a_3^4 – 1)$
    $ = a_1.(a_1-1).(a_1+1).(a_1^2 + 1) + a_2.(a_2-1).(a_2+1).(a_2^2 + 1) + a_3.(a_3-1).(a_3+1).(a_3^2 + 1) $
    Xét : $x.(x-1).(x+1).(x^2 + 1)$
    Dễ thấy $x.(x-1).(x+1) \vdots 6$ nên $x.(x-1).(x+1).(x^2 + 1) \vdots 6$
    Ta cần chứng minh $x.(x-1).(x+1).(x^2 + 1) \vdots 5$
    Thật vậy có : $x.(x-1).(x+1).(x^2 + 1) = $x.(x-1).(x+1).(x^2 -4 + 5)$
    $ = $x.(x-1).(x+1).(x-2).(x+2) + 5.x.(x-1).(x+1) \vdots 5$
    Vậy nên : $x.(x-1).(x+1).(x^2 + 1) \vdots 30$
    Áp dụng vào bài toán thì ta có :  $a_1^5 + a_2^5 + a_3^5 – (a_1+a_2+a_3) \vdots 30$
    Mà : $a_1+a_2+a_3 \vdots 30$
    Nên : $a_1^5 + a_2^5 + a_3^5 \vdots 30$
    $\to đpcm$
     

Leave a reply

222-9+11+12:2*14+14 = ? ( )