Register Now

Login

Lost Password

Lost your password? Please enter your email address. You will receive a link and will create a new password via email.

222-9+11+12:2*14+14 = ? ( )

Toán Lớp 7: So sánh : `222^555` và `555^222`

Toán Lớp 7: So sánh : 222^555 và 555^222

Comments ( 2 )

  1. Giải đáp:
     
    Lời giải và giải thích chi tiết:
     Ta có:
    $222^{555}$ =$(222^5)^{111}$ =$(2.111)^5)^{111}$=$(2^5.111^5)^{111}$ 
    $555^{222}$ =$(5.111)^{111.2}$ =$(5.111)^2)^{111}$ =$(5^2.111^2)^{111}$
    Mà  $5^{2}$. $111^{2}$ =25 .$111^{2}$
          $2^{5}$.$111^{5}$=32.$111^{5}$
    =>$2^{5}$.$111^{5}$ > $5^{2}$. $111^{2}$
    =>$(2^5.111^5)^{111}$>$(5^2.111^2)^{111}$
    =>$222^{555}$ >$555^{222}$

  2. Giải đáp:
     Ta có:
    $222^{555}$= $(111.2)^{555}$= $[(111.2)^{5}]^{111}$= $(111^{5})^{111}$ . $32^{111}$ 
    $555^{222}$= $(111.5)^{222}$= $[(111.5)^{2}]^{111}$= $(111^{2})^{111}$ . $25^{111}$ 
    Vì $(111^{5})^{111}$ . $32^{111}$ > $(111^{2})^{111}$ . $25^{111}$ nên $222^{555}$ > $555^{222}$
    Vậy $222^{555}$ > $555^{222}$
    ^^ Học Tốt ^^ #AwishfromHoàng
     

Leave a reply

222-9+11+12:2*14+14 = ? ( )