Register Now

Login

Lost Password

Lost your password? Please enter your email address. You will receive a link and will create a new password via email.

222-9+11+12:2*14+14 = ? ( )

Toán Lớp 8: Chứng minh: $x^{3}$ + $y^{3}$ + $z^{3}$ = $3xyz$ thì $a=b=c$ ; $a + b+ c = 0$

Toán Lớp 8: Chứng minh: $x^{3}$ + $y^{3}$ + $z^{3}$ = $3xyz$ thì $a=b=c$ ; $a + b+ c = 0$

Comments ( 1 )

  1. $\\$
    x^3 + y^3 + z^3 = 3xyz
    -> x^3 + y^3 +z^3 – 3xyz=0
    -> (x+y)^3 – 3xy (x+y) + z^3 – 3xyz=0
    -> (x+y+z)[(x+y)^2 – (x+y)z + z^2] – 3xy (x+y+z)=0
    -> (x+y+z) (x^2 + 2xy + y^2 – xz – yz +z^2) – 3xy (x+y+z)=0
    -> (x+y+z) (x^2 + y^2 +z^2 +2xy – xz – yz – 3xy)=0
    -> (x+y+z)(x^2 + y^2+z^2 – xy – yz – xz)=0
    -> 1/2 (x+y+z) (2x^2 +2y^2 +2z^2 – 2xy – 2yz – 2xz)=0
    -> 1/2 (x+y+z)[(x^2 – 2xy + y^2)+(y^2 -2yz +z^2) + (x^2 – 2xz +z^2)]=0
    -> 1/2 (x+y+z) [(x-y)^2 + (y-z)^2 + (x-z)^2]=0
    -> \(\left[ \begin{array}{l}x+y+z=0 (1)\\(x-y)^2 +(y-z)^2 + (x-z)^2=0\end{array} \right.\) 
    $\bullet$ (x-y)^2 + (y-z)^2 + (x-z)^2=0
    Với mọi x,y,z có : $\begin{cases} (x-y)^2≥0\\(y-z)^2 ≥0\\(x-z)^2≥0\end{cases}$
    -> (x-y)^2 + (y-z)^2 + (x-z)^2 ≥0∀x,y,z 
    Dấu “=” xảy ra khi :
    ↔ $\begin{cases} (x-y)^2=0\\(y-z)^2=0\\(x-z)^2=0 \end{cases}$
    ↔ $\begin{cases} x-y=0\\y-z=0\\x-z=0 \end{cases}$
    ↔ $\begin{cases} x=y\\y=z\\x=z \end{cases}$
    ↔ x=y=z (2)
    Từ (1), (2)
    -> x=y=z, x+y+z=0

Leave a reply

222-9+11+12:2*14+14 = ? ( )