Toán Lớp 9: Cho biểu thức : P = 1: (x+2/x √x -1 + √x+1/x+ √x+1 – √x+1/ x-1) Rút gọn biểu thức và so sánh P với 3
Question
Lost your password? Please enter your email address. You will receive a link and will create a new password via email.
TRẢ LỜI ( 1 )
Dkxd:x > 0;x\# 1\\
P = 1:\left( {\dfrac{{x + 2}}{{x\sqrt x – 1}} + \dfrac{{\sqrt x + 1}}{{x + \sqrt x + 1}} – \dfrac{{\sqrt x + 1}}{{x – 1}}} \right)\\
= 1:\left( {\dfrac{{x + 2}}{{\left( {\sqrt x – 1} \right)\left( {x + \sqrt x + 1} \right)}} + \dfrac{{\sqrt x + 1}}{{x + \sqrt x + 1}} – \dfrac{1}{{\sqrt x – 1}}} \right)\\
= 1:\dfrac{{x + 2 + \left( {\sqrt x + 1} \right)\left( {\sqrt x – 1} \right) – \left( {x + \sqrt x + 1} \right)}}{{\left( {\sqrt x – 1} \right)\left( {x + \sqrt x + 1} \right)}}\\
= \dfrac{{\left( {\sqrt x – 1} \right)\left( {x + \sqrt x + 1} \right)}}{{x + 2 + x – 1 – x – \sqrt x – 1}}\\
= \dfrac{{\left( {\sqrt x – 1} \right)\left( {x + \sqrt x + 1} \right)}}{{x – \sqrt x }}\\
= \dfrac{{x + \sqrt x + 1}}{{\sqrt x }}\\
P – 3\\
= \dfrac{{x + \sqrt x + 1}}{{\sqrt x }} – 3\\
= \dfrac{{x + \sqrt x + 1 – 3\sqrt x }}{{\sqrt x }}\\
= \dfrac{{{{\left( {\sqrt x – 1} \right)}^2}}}{{\sqrt x }} > 0\left( {khi:x > 0;x\# 1} \right)\\
\Leftrightarrow P > 3
\end{array}$