2x²–x= 3–6x
=>x(2x–1)=–3(1–2x)
=>x(2x–1)= –3(1–2x)
=>x(2x–1)+3(2x–1)=0
=> (2x–1).(x+3)=0
=> 2x–1= 0 hoặc x+3=0
=> 2x = 1 hoặc x = –3
=> x= 1/2 hoặc x = –3
Vậy x= 1/2 hoặc x= –3
b) x²–1= 2013(x–1)
=>(x+1)(x–1)= 2013(x–1)
=> (x+1)(x–1)–2013(x–1)=0
=>(x+1–2013).(x–1)= 0
=>(x+1–2013)= 0 hoặc x–1= 0
=> x–2012= 0 hoặc x–1= 0
=> x = 2012 hoặc x = 1
Vậy x= 2012 hoặc x= 1
TRẢ LỜI ( 2 )
2x²–x= 3–6x
=>x(2x–1)=–3(1–2x)
=>x(2x–1)= –3(1–2x)
=>x(2x–1)+3(2x–1)=0
=> (2x–1).(x+3)=0
=> 2x–1= 0 hoặc x+3=0
=> 2x = 1 hoặc x = –3
=> x= 1/2 hoặc x = –3
Vậy x= 1/2 hoặc x= –3
b) x²–1= 2013(x–1)
=>(x+1)(x–1)= 2013(x–1)
=> (x+1)(x–1)–2013(x–1)=0
=>(x+1–2013).(x–1)= 0
=>(x+1–2013)= 0 hoặc x–1= 0
=> x–2012= 0 hoặc x–1= 0
=> x = 2012 hoặc x = 1
Vậy x= 2012 hoặc x= 1
a) 2x² – x = 3 – 6x
⇔ 2x² – x + 6x – 3 = 0
⇔ x ( 2x – 1 ) + 3 ( 2x – 1 ) = 0
⇔ ( 2x – 1 ) ( x + 3 ) = 0
⇔ $\left[\begin{matrix} 2x – 1 = 0 \\ x + 3 = 0 \end{matrix}\right.$
⇔ $\left[\begin{matrix} 2x = 1 \\ x = 0 – 3 \end{matrix}\right.$
⇔ $\left[\begin{matrix} x = \dfrac{1}{2} \\ x = -3 \end{matrix}\right.$
Vậy x = 1/2 hoặc x = -3
___________________________________________________
b) x² – 1 = 2013 ( x – 1 )
⇔ x² – 1 – 2013 ( x – 1 ) = 0
⇔ ( x – 1 ) ( x + 1 ) – 2013 ( x – 1 ) = 0
⇔ ( x – 1 ) ( x + 1 – 2013 ) = 0
⇔ ( x – 1 ) ( x – 2012 ) = 0
⇔ $\left[\begin{matrix} x – 1 = 0 \\ x – 2012 = 0 \end{matrix}\right.$
⇔ $\left[\begin{matrix} x = 1 \\ x = 2012\end{matrix}\right.$
Vậy x = 1 hoặc x = 2012