Toán Lớp 12: Tính tích phân $\int\limits^1_{-1} {\frac{x}{x^2+1+x}} \, dx$

Question

Toán Lớp 12: Tính tích phân $\int\limits^1_{-1} {\frac{x}{x^2+1+x}} \, dx$, hướng dẫn giải giúp em bài này ạ, em cảm ơn thầy cô và các bạn nhiều.

in progress 0
Quỳnh Nhi 2 tuần 2022-06-07T09:37:25+00:00 1 Answer 0 views 0

TRẢ LỜI ( 1 )

  1. Giải đáp:
    \(I = \dfrac12\ln3 – \dfrac{\pi\sqrt3}{6}\)
    Lời giải và giải thích chi tiết:
    \(\begin{array}{l}
    \quad I = \displaystyle\int\limits_{-1}^1\dfrac{x}{x^2 + x + 1}dx\\
    \Leftrightarrow I =  \displaystyle\int\limits_{-1}^1\left[\dfrac{2x +1}{2(x^2 + x +1)} – \dfrac{1}{2(x^2  +x + 1)}\right]dx\\
    \Leftrightarrow I = \dfrac12 \displaystyle\int\limits_{-1}^1\dfrac{2x+1}{x^2 +x + 1}dx – \dfrac12\displaystyle\int\limits_{-1}^1\dfrac{1}{\left(x + \dfrac12\right)^2 + \dfrac34}dx\\
    \Leftrightarrow I = \dfrac12\ln(x^2 + x + 1)\Bigg|_{-1}^1 – \dfrac12\cdot \dfrac{2}{\sqrt3}\cdot \arctan\left(\dfrac{x + \dfrac12}{\dfrac{\sqrt3}{2}}\right)\Bigg|_{-1}^1\\
    \Leftrightarrow I = \dfrac12\ln(x^2 + x + 1)\Bigg|_{-1}^1 – \dfrac{1}{\sqrt3}\arctan\left(\dfrac{2x+1}{\sqrt3}\right)\Bigg|_{-1}^1\\
    \Leftrightarrow I = \dfrac12\ln3 – \dfrac{\pi\sqrt3}{6}
    \end{array}\)

Leave an answer

Browse

12:2+4x4-12:2-5x3 = ? ( )