Toán Lớp 10: Tìm GTLN của biểu thức M = $\sqrt{a+1}+\sqrt{b+1}+\sqrt{c+1}$ với a,b,c>0, a+b+c=1.

Question

Toán Lớp 10: Tìm GTLN của biểu thức M = $\sqrt{a+1}+\sqrt{b+1}+\sqrt{c+1}$ với a,b,c>0, a+b+c=1., hướng dẫn giải giúp em bài này ạ, em cảm ơn thầy cô và các bạn nhiều.

in progress 0
Quỳnh Ngân 1 tháng 2022-03-19T09:47:43+00:00 1 Answer 0 views 0

TRẢ LỜI ( 1 )

  1. Cách 1: Dùng BĐT Bunhiacopxki

    Áp dụng BĐT Bunhiacopxki, ta có:

    M^2 = (\sqrt{a + 1} + \sqrt{b + 1} + \sqrt{c + 1})^2

            = (1.\sqrt{a + 1} + 1. \sqrt{b + 1} + 1. \sqrt{c + 1})^2 ≤ (1^2 + 1^2 + 1^2)[(\sqrt{a + 1})^2 + (\sqrt{b + 1})^2 + (\sqrt{c + 1})^2] = 3(a + 1 + b + 1 + c + 1) = 3(1 + 3) = 12

    $\\$

    Ta được: M^2 ≤ 12

    ⇔ M ≤ 2\sqrt{3}

    Vậy GTLN của M là: 2\sqrt{3} khi: a = b = c = 1/3

    Cách 2: Dùng BĐT Cô – si

    Áp dụng BĐT Cô – si, ta có:

    $\dfrac{2}{\sqrt{3}}$.\sqrt{a + 1} <= \frac{(2/\sqrt{3})^2 + (\sqrt{a + 1})^2}{2} = $\dfrac{\dfrac{4}{3} + a + 1}{2}$ = $\dfrac{\dfrac{7}{3} + a}{2}$ 

    $\\$

    $\dfrac{2}{\sqrt{3}}$.\sqrt{b + 1} <= \frac{(2/\sqrt{3})^2 + (\sqrt{b + 1})^2}{2} = $\dfrac{\dfrac{4}{3} + b + 1}{2}$ = $\dfrac{\dfrac{7}{3} + b}{2}$ 

    $\\$

    $\dfrac{2}{\sqrt{3}}$.\sqrt{c + 1} <= \frac{(2/\sqrt{3})^2 + (\sqrt{c + 1})^2}{2} = $\dfrac{\dfrac{4}{3} + c + 1}{2}$ = $\dfrac{\dfrac{7}{3} + c }{2}$ 

    ⇒ $\dfrac{2}{\sqrt{3}}$.\sqrt{a + 1} + $\dfrac{2}{\sqrt{3}}$.\sqrt{b + 1} + $\dfrac{2}{\sqrt{3}}$.\sqrt{c + 1} ≤ $\dfrac{\dfrac{7}{3} + a}{2}$ + $\dfrac{\dfrac{7}{3} + b}{2}$ + $\dfrac{\dfrac{7}{3} + c}{2}$

    ⇔ $\dfrac{2}{\sqrt{3}}$.(\sqrt{a + 1} + \sqrt{b + 1} + \sqrt{c + 1}) ≤ $\dfrac{\dfrac{7}{3} + a}{2}$ + $\dfrac{\dfrac{7}{3} + b}{2}$ + $\dfrac{\dfrac{7}{3} + c}{2}$ 

    $\\$

    ⇔ $\dfrac{2}{\sqrt{3}}$.M ≤ $\dfrac{\dfrac{7}{3} + a}{2}$ + $\dfrac{\dfrac{7}{3} + b}{2}$ + $\dfrac{\dfrac{7}{3} + c}{2}$ = $\dfrac{\dfrac{7}{3} + a + \dfrac{7}{3} + b + \dfrac{7}{3} + c}{2}$ = $\dfrac{\dfrac{7}{3} + \dfrac{7}{3} + \dfrac{7}{3} + 1}{2}$ = 4

    $\\$

    ⇔ M ≤ $\dfrac{4}{\dfrac{2}{\sqrt{3}}}$ = 2\sqrt{3}

    Vậy GTLN của M là: 2\sqrt{3} khi: a = b = c = 1/3

     

Leave an answer

Browse

12:2+4x4-12:2-5x3 = ? ( )